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Abstract
We compare and contrast the error probability and fidelity as measures of the
quality of the receiver’s measurement strategy for a quantum communications
system. The error probability is a measure of the ability to retrieveclassical
information and the fidelity measures the retrieval ofquantum information. We
present the optimal measurement strategies for maximizing the fidelity given a
source that encodes information on the symmetric qubit-states.

PACS numbers: 03.67.−a, 03.65.Bz, 89.70.+c

1. Introduction

The principles governing the communication of information by a quantum channel are now well
known [1–3]. The transmitting party (Alice) selects from a set of signal states|ψ j〉 and uses a
string of these to encode her message. These states are known to the receiving party (Bob) who
also knows thea priori probabilitiespj for selection of each of the signal states. Bob’s problem
is to decide upon an optimal detection strategy. His choice of strategy will depend on the way
in which the information he receives is to be used. In mathematical terms, Bob must choose
a strategy so as to extremize some function of his measurement outcomes and commonly
occuring examples are the minimum error probability or minimum Bayes cost [1–5], and the
accessible information [6–10]. These quantities determine the quality of Bob’s strategy for
recovering the classical information associated with Alice’s selection of the transmitted state.

In this paper we will be concerned with a different measure of Bob’s measurement strategy.
This quantity, which we refer to as the fidelity, determines Bob’s ability to access thequantum
information contained in Alice’s signal. The fidelity depends on Bob’s choice of measurement
strategy and also on his subsequent selection of a new quantum state. The extent to which
the selected state matches that chosen by Alice will determine Bob’s ability to reconstruct the
selected quantum state. We will introduce the fidelity and compare its properties with those
of the more familiar error probability in the following section. At this stage, we can motivate
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our idea by considering the familiar problem of eavesdropping in quantum key distribution
[11]. The error probability and fidelity relate, in this case, to the two principal factors in
assessing any eavesdropping strategy. The error probability is simply the probability that the
eavesdropper will fail to learn the state selected by Alice, while the fidelity is the probability
that the state selected by the eavesdropper for transmission to Bob will appear to Bob as the
state selected by Alice. In this way, error probability is related to the security of the classical
informationencoded by Alice and the fidelity is related to the likelihood of escaping detection5.

We have not been able to find general criteria for maximizing the fidelity. This maximum
fidelity was introduced by Fuchs [12] who referred to it as the accessible fidelity. For a special
class of qubit-states known as the symmetric states, however, we have been able to derive
the strategy that maximizes the fidelity. The measurement part of the optimal strategy is not
unique, but includes the strategy that also minimizes the error probability [5].

2. Fidelity and error probability

In a quantum communications channel, Bob’s problem is to distinguish between the set
of possible signal states,|ψj 〉(j = 1, . . .M), that Alice may have sent. He does this by
performing a measurement, the results of which are associated with the POM elements [1,
13] π̂k. There is, of course, no particular reason for the number of possible measurement
outcomes to equalM, the number of possible signal states. The probability that Bob observes
the result ‘k’ given that Alice selected the state|ψj 〉 is

P(k | j) = 〈ψj |π̂k|ψj 〉. (1)

If Bob wishes to determine the signal state then the probability that he will do so correctly is

Pc =
M∑
j=1

P(j | j)pj =
M∑
j=1

〈ψj |π̂j |ψj 〉pj . (2)

This quantity is a measure of the success of Bob’s strategy at recovering Alice’s (classical)
choice of signal state. The error probability is simply 1− Pc:

Pe = 1 −
M∑
j=1

〈ψj |π̂j |ψj 〉pj . (3)

Necessary and sufficient conditions are known for minimizingPe (or maximizingPc) [1–4]
although very few explicit examples of the required POM elements have been given. Some of
these minimum error POMs have recently been implemented optically [14–16].

The fidelity is more closely related to the retrieval of the quantum information ‘|ψ j〉’.
As a physical picture, consider Bob to be operating some relay station in a communications
channel. He must measure the signal and then, on the basis of his measurement, he selects
a state to retransmit. The fidelity is then a measure of how well the selected state matches
the original signal state selected by Alice. We can see this by considering one of the possible
sequences of events. Let us suppose that Alice has sent the signal state|ψ j〉 and that Bob’s
measurement has given the result ‘k’ corresponding to the POM element ˆπk. He then selects a
state,|φk〉, that depends on the measurement result, for retransmission. The simplest question
that we can ask to assess the retransmitted state is ‘is this state|ψ j〉?’. The probability that this
question will be answered in the affirmative is just the modulus squared overlap of the signal
5 There are, of course, more sophisticated strategies available to the eavesdropper than measurement and
retransmission and the quality of these will be determined by other measures.
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state and the retransmitted state,|〈ψj |φk〉|2. Thea priori probability that the retransmitted
state will pass this test is the fidelity

F =
M∑
j=1

∑
k

|〈ψj |φk〉|2〈ψj |π̂k|ψj 〉pj . (4)

This quantity determines the quality of the measurement–retransmission strategy adopted by
Bob. The strategy adopted by Bob depends on both his choice of measurement (associated
with the POM elements ˆπk) and the selection of the associated retransmission states (|φk〉).
A large value ofF corresponds to a good strategy while a smaller value indicates a less good
one. The strategy that best extracts the quantum information will be the one that gives the
maximum fidelity. The general principles governing the maximum fidelity are unknown to us
although this maximum value and the associated measurement and retransmission states have
been derived for a special case [12]. We will present strategies for maximizing the fidelity for
a wider set of possible signal states (the symmetric qubit-states) in section 4.

3. Symmetric states

The symmetric states were introduced for the problems of state discrimination by Banet al
[5]. These states,|ψ j〉, are generated from a single state,|ψ1〉, by the action of a unitary
operatorV̂ :

|ψj 〉 = V̂ j−1|ψ1〉. (5)

TheseM states are said to be symmetrical if they area priori equally likely to have been
selected and

V̂
M = Î (6)

so that6 |ψj+M〉 = |ψj 〉.
The minimum error probability occurs [5] if we adopt the so-called square-root

measurement [17–19] for which theM POM elements are

π̂k = �̂−1/2|ψk〉〈ψk |�̂−1/2 (7)

where

�̂ =
M∑
j=1

|ψj 〉〈ψj |. (8)

The resulting minimum error probability is then

Pmin
e = 1 − |〈ψ1|�̂−1/2|ψ1〉|2. (9)

In this paper we will obtain the maximum fidelity for any symmetric states of a single qubit.
We can represent these states in terms of the orthonormal eigenstates,|±〉, of the unitary
operator

V̂ = exp

[
i
2π

M
|−〉〈−|

]
. (10)

6 We note that we can also accommodate situations in whichV̂
M = Îeiα , for some phaseα, by replacingV̂ with

V̂
′ = V̂ e−iα/M .
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This operator clearly satisfies the requirement of equation (6) for a symmetric set of states.
OurM equiprobable symmetric states are

|ψj 〉 = cos

(
θ

2

)
|+〉 + exp

(
i
2π

M
(j − 1)

)
sin

(
θ

2

)
|−〉 (0 � θ � π/2). (11)

It is helpful to picture these states on the Bloch sphere (see figure 1).

Figure 1. The symmetric set of states{|ψ j〉}. The square-root measurement has POM elements
that are proportional to projectors onto the states{|µj〉}. This measurement minimizes the average
error probability in distinguishing the states.

Each of the states is represented by a point on the surface of the sphere using polar
coordinates,θ andφ, corresponding toθ and 2π j/M respectively in equation (11). The
symmetric states lie on a single circle of the Bloch sphere at the latitudeπ/2 − θ . For this
set of symmetric states the minimum error probability is obtained by means of a POM with
elements

π̂j = 2

M
|µj 〉〈µj | (12)

where

|µj 〉 = 1√
2

[
|+〉 + exp

(
i
2π

M
(j − 1)

)
|−〉

]
. (13)

These states correspond to points on the equator of the Bloch sphere at the same longitude
(φ coordinate) as the corresponding signal states|ψ j〉 (see figure 1). The associated minimum
error probability is

Pmin
e = 1 − 1

M
(1 + sinθ). (14)

As θ varies between 0 andπ/2 this error probability varies between 1− 1/M and 1− 2/M.
These values correspond to guessing the value ‘j’ when the states all correspond to the single
ket|+〉 and the minimum attainable error probability for symmetric states [4, 15] which occurs
when the symmetric states lie on the equator of the Bloch sphere.

In the following section we establish the maximum fidelity attainable for this ensemble
of states.
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4. Maximum fidelity

In seeking to maximize the fidelity it is helpful to write it in the form [12]

F =
∑
k

〈φk|Ôk|φk〉 (15)

whereÔk is the Hermitian operator

Ôk = 1

M

M∑
j=1

|ψj 〉〈ψj |π̂k|ψj 〉〈ψj |. (16)

The selection of the retransmission states|φk〉 is now straightforward. The best state to select
will be the eigenstate of̂Ok having the largest eigenvalue and the corresponding maximum
fidelity is simply the sum of the maximum eigenvalues of the operatorsÔk [12].

The problem of maximizingF is now simply one of selecting the POM or POMs that
produce the largest eigenvalue sum. Naturally, there are constraints associated with the fact
that our POM elements must be Hermitian, positive-semidefinite and must sum to the identity.
In seeking the optimal POM, it is sufficient to consider only rank-one elements corresponding
to weighted projectors onto pure states7. The (rank-one) POM elements can be written in the
form

π̂k = 2wk

[
cos

(
θk

2

)
|+〉 + eiφk sin

(
θk

2

)
|−〉

] [
cos

(
θk

2

)
〈+| + e−iφk sin

(
θk

2

)
〈−|

]
(17)

or, more simply, as the matrix

π̂k = wk
(

1 + cosθk e−iφk sinθk
eiφk sinθk 1 − cosθk

)
(18)

where the basis states|+〉 and |−〉 correspond to the column vectors (1, 0)T and (0, 1)T

respectively. Here,wk is a weight factor bounded by 0� wk � 1. The requirement that
the POM elements should sum to the identity places restrictions on the allowed values of the
parametersθ k, φk andwk . These take the form:∑

k

wk = 1 (19)

∑
k

wk cosθk = 0 (20)

∑
k

wkeiφk sinθk = 0. (21)

Our first task is to obtain the greater of the two eigenvalues for each of the operatorsÔk.
Evaluating the sum in equation (16) and writing the resulting operator in matrix form gives

Ôk = wk

2

(
(1 + cosθ)(1 + cosθ cosθk) 1

2 sin2 θ sinθk(e−iφk + δM,2eiφk )
1
2 sin2 θ sinθk(eiφk + δM,2e−iφk ) (1 − cosθ)(1 + cosθ cosθk)

)
(22)

whereδM,2 is the usual Kronecker delta. We see that this matrix has one of two possible forms,
one if M > 2 and one ifM = 2. It is simplest to deal with these two cases separately.

7 The reason for this is that the fidelity is linear in the POM elements and hence rank-two projectors can be included
as a pair of rank-one projectors.
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Case 1. M > 2
If we have more than two signal states then the operator equation (22) reduces to

Ôk = wk

2

(
(1 + cosθ)(1 + cosθ cosθk) 1

2 sin2 θ sinθke−iφk

1
2 sin2 θ sinθkeiφk (1 − cosθ)(1 + cosθ cosθk)

)
. (23)

The two eigenvalues of this matrix are

ν±(θk) = wk

2

{
1 + cosθ cosθk ±

[
cos2 θ(1 + cosθ cosθk)2 +

1

4
sin4 θ sin2 θk

]1/2
}

(24)

so the maximum value of the fidelity has the form

F =
∑
k

ν+(θk) = 1

2
+

1

2

∑
k

wk

[
cos2 θ(1 + cosθ cosθk)2 +

1

4
sin4 θ sin2 θk

]1/2

(25)

where we have used equations (19) and (20). Our remaining task is to maximize this quantity
subject to the constraints that the operators ˆπk form a POM, equations (19–21). The natural
approach to tackling such constrained extremization problems is to use Lagrange’s method of
undetermined multipliers. Before performing this maximization we note that the maximum
fidelity, equation (25), does not depend on the phasesφk. This means that the contribution to
the fidelity will be the same for each POM element having the same value ofθ k. Hence we
can easily impose the constraint (21) by choosing a POM withN elements for each distinct
value ofθ k satisfying the simpler condition

N∑
l=1

wl(k)e
iφl = 0 (26)

wherewl(k) are the weights associated with theN POM elements for whichθ = θ k. Hence
we will not impose the constraint (21) in our variational calculation. In order to impose the
remaining constraints, (19) and (20), we introduce the zero-valued quantities

G1 =
∑
k

wk − 1 (27)

and

G2 =
∑
k

wk cosθk. (28)

The extrema of the fidelity will be given by the stationary points of the function

H = F + λ1G1 + λ2G2 (29)

under independent variation of the parametersθ k andwk . Hereλ1 andλ2 are the undetermined
multipliers.

The stationarity condition for variation ofH with respect towk gives

∂H

∂wk
= 1

2

[
cos2 θ(1 + cosθ cosθk)2 +

1

4
sin4 θ(1 − cos2 θk)

] 1
2

+ λ1 + λ2 cosθk = 0. (30)

while variation with respect toθ k gives

∂H

∂θk
= − sinθk

wk

2

{[
cos2 θ(1 + cosθ cosθk)

2 +
1

4
sin4 θ(1 − cos2 θk)

]− 1
2

×
[
cos3 θ + cosθk

(
cos4 θ − 1

4
sin4 θ

)]
+ 2λ2

}
= 0. (31)
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The possible solutions of equation (31) are (i)wk = 0 corresponding to uninteresting zero
POM elements, (ii) sinθk = 0, corresponding to POM elements that are proportional to|+〉〈+|
and|−〉〈−|, and (iii) the function in curly parentheses is zero. This final condition reduces,
by use of equation (30), to

cosθk = 4λ1λ2 − cos3 θ

cos4 θ − 1
4 sin4 θ − 4λ2

2

= cos (32)

which has onlyone solution.

Remarkably, we can conclude that the strategy for achieving the maximum fidelity depends
only on three possible values ofθ k, these being 0,π and the, yet to be determined, . Rather
than continue with our undetermined multipliers, the simplest way to proceed is to reformulate
the problem in terms of the fidelityF with the constraints imposed. We do this by specifying
N + 2 possible POM elements corresponding to the required values (0,π and ) of θ k:

π̂0 = w0

(
2 0
0 0

)
(33)

π̂π = wπ
(

0 0
0 2

)
(34)

π̂l = wl
(

1 + cos e−iφl sin 
eiφl sin 1 − cos 

)
(l = 1, . . . , N). (35)

The fidelity is then

F = 1

2
+
w0

2
cosθ(1 + cosθ) +

wπ

2
cosθ(1 − cosθ)

+W

[
cos2 θ(1 + cosθ cos )2 +

1

4
sin4 θ(1 − cos2 )

] 1
2

(36)

whereW = ∑N
l=1wl . We can impose the constraints (19) and (20) in order to removew0

andwπ which leaves us with

F = 1

2
+

1

2
(1 −W) cosθ − 1

2
W cos2 θ cos 

+
1

2
W

[
cos2 θ(1 + cosθ cos )2 +

1

4
sin4 θ(1 − cos2 )

] 1
2

. (37)

Extremizing this fidelity to obtain the global maximum value now corresponds to satisfying
the conditions

∂F

∂W
= 1

2

{
− cosθ − cos2 θ cos 

+

[
cos2 θ(1 + cosθ cos )2 +

1

4
sin4 θ(1 − cos2 )

] 1
2
}

= 0 (38)

∂F

∂ 
= − sin 

W

2

{
−cos2θ +

[
cos2 θ(1 + cosθ cos )2 +

1

4
sin4 θ(1 − cos2 )

]− 1
2

×
[
cos3 θ + cos 

(
cos4 θ − 1

4
sin4 θ

)]}
= 0. (39)
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The solution sin = 0 corresponds to the POM elements Eqs. (33) and (34). Combining the
remaining non-trivial solution with (equation 38) leads to the appealingly simple result that
cos = 0. Hence the fidelity has the form

F = 1

2
(1 + cosθ) +

W

2

[(
cos2 θ +

1

4
sin4 θ

) 1
2

− cosθ

]
. (40)

The maximum value that this can take clearly corresponds to settingW = 1 and hence the
global maximum value that the fidelity can take for symmetric qubit-states is

Fmax = 1 − 1

4
sin2 θ. (41)

This takes its maximum value of unity forθ = 0. This is reasonable as in this case all the
signal states correspond to|+〉 and unit fidelity can always be achieved by choosing the single
state|+〉 for retransmission. The fidelity is a monotonically decreasing function ofθ and takes
its smallest value of 3/4 for θ = π/2 [12].

Having determined the maximum value of the fidelity, we now turn our attention to the
form of Bob’s strategy for realizing this value. The conditions = π/2 andW = 1 tell us
that the optimal POM will haveN elements of the form

π̂l = wl
(

1 e−iφl

eiφl 1

)
= wl(|+〉 + eiφl |−〉)(〈+| + e−iφl 〈−|) (42)

where the parameterswk andφk satisfy the constraints

N∑
l=1

wl = 1 (0 � wl � 1) (43)

N∑
l=1

wle
iφl = 0 (44)

corresponding to equations (19) and (20), respectively. The problem of maximizing the fidelity
does not constrain the choice of POM any further than this and soany POM with elements of
the form (42) and satisfying the conditions (43) and (44) will maximize the fidelity. Important
examples include the symmetric POM with elements

π̂l = 1

N

(
1 exp

[ − i
(
α + 2πl

N

)]
exp

[
i
(
α + 2πl

N

)]
1

)
(N � 2) (45)

whereα is any desired phase. We note that the choiceN = 2 corresponds to a simple von
Neumann measurement. Furthermore, settingN = M andα = 0 shows that the square-root
measurement, with POM elements (12) can also maximize the fidelity. An example of the
states corresponding to the POM with elements (45) are depicted in figure 2.

The retransmission states|φl} that maximize the fidelity correspond to the maximum-
eigenvalue eigenstates of the operator (23) withθ k =  = π/2. This operator is

Ôl = wl

2

(
1 + cosθ 1

2e−iφl sin2 θ
1
2eiφl sin2 θ 1 − cosθ

)
(46)

and the corresponding maximum eigenvalue is

ν+(l) = wl
(

1 − 1

4
sin2 θ

)
. (47)
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Figure 2. Optimal strategy that attains the maximum fidelity. There are various possible optimal
measurement strategies as explained in the text. In this figure, the measurement with three outputs
(N = 3) andα = 0, and the corresponding retransmission states are shown. The retransmission
states are positioned at the same longitude (φ coordinate) as the corresponding POM elements but
are further north than the original signal states.

Solving for the associated eigenvector gives the required retransmission state associated with
the measurement outcome ‘k’:

|φl〉 = 1√
2
(1 + cos2 θ)−

1
2 [(1 + cosθ)|+〉 + eiφl (1 − cosθ)|−〉]

= cos

(
χ

2

)
|+〉 + eiφl sin

(
χ

2

)
|−〉. (48)

These states are depicted on the Bloch sphere in figure 2. They are positioned at the same
longitude (φ coordinate) as the corresponding POM elements but are further north than the
original signal states, having a latitudeπ/2 − χ where

cosχ = 2 cosθ

1 + cos2 θ
. (49)

We can now summarize our strategies for obtaining the maximum fidelity. Any POM
with elements given by equation (45) constitutes an optimum measurement. These operators
will form a POM if the conditions (43) and (44) are satisfied. The fidelity will be maximized
if the retransmission state selected on the basis of the measurement outcome ‘l’ has the polar
coordinates (χ , φl) on the Bloch sphere, withχ given by equation (49).

Case 2. M = 2
If M = 2 then we have only two possible signal states

|ψj 〉 = cos

(
θ

2

)
|+〉 ± sin

(
θ

2

)
|−〉

(
0 � θ � π

2

)
. (50)

The representation of these states on the Bloch sphere is depicted in figure 3.
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Figure 3. The case of two signal states. In this case the optimal solution is unique, and
comprises a von Neumann measurement and the retransmission of two nonorthogonal states.
The retransmission states are again further north than the original signal states. All associated
states have the same longitude.

The two states correspond to two points at the same latitude in the northern hemisphere
with longitudes separated byπ . For these two states the operator (22) becomes

Ôk = wk

2

(
(1 + cosθ)(1 + cosθ cosθk) sin2 θ sinθk cosφk

sin2 θ sinθk cosφk (1 − cosθ)(1 + cosθ cosθk)

)
(51)

the eigenvalues of which are

ν±(θk, φk) = wk

2
{1 + cosθ cosθk

± [cos2 θ(1 + cosθ cosθk)2 + sin4 θ sin2 θk cos2 φk]1/2}. (52)

The required greater of the two eigenvalues is clearly maximized by settingφk = 0 orπ . Thus
the strategy that maximizes the fidelitymust comprise only POM elements corresponding to
states at the same longitudes as the two signal states.

The maximization of the fidelity (25) follows the same lines as that for the caseM > 2
and we will only present the main results. The extremization of the fidelity subject to the
constraints (19) and (20) leads to the conclusion that the only possible values forθ k are 0,π
and one other angle . Repeating the extremization with these possible values forθ k leads to
the result that = π/2 and that this is the value for which the fidelity can attain its maximum
value. It follows that theunique measurement strategy for maximizing the fidelity with the
two possible signal states (50) has the two POM elements

π̂k = 1

2

(
1 (−1)k−1

(−1)k−1 1

)
. (53)

This corresponds to a von Neumann measurement, the two possible outcomes of which
correspond to the two orthonormal states

|µk〉 = 1√
2
(|+〉 + (−1)k−1|−〉). (54)
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This is the strategy that also minimizes the error probability if we associate the measurent
outcome ‘k’ with the signal state|ψk〉. The resulting maximum possible value for the fidelity
is

Fmax = 1

2

[
1 + (cos2 θ + sin4 θ)

1
2
]
. (55)

This takes its maximum value of unity for bothθ = 0 andθ = π/2. This is reasonable as
for θ = 0 all the signal states correspond to|+〉 and unit fidelity can be achieved by simply
retransmitting|+〉. Forθ = π/2 the two signal states (50) are orthogonal and a von Neumann
measurement can determine the signal state with certainty. The required retransmission state
is then simply the signal state.

The required retransmission states that achieve this maximum are the eigenstates of the
two operators

Ôk = 1

4

(
(1 + cosθ) (−1)k−1 sin2 θ

(−1)k−1 sin2 θ (1 − cosθ)

)
(56)

having the common greater eigenvalue

ν+ = 1

4

[
1 + (cos2 θ + sin4 θ)

1
2
]
. (57)

These retransmission states are

|φk〉 = 1√
2
(cos2 θ + sin4 θ)−

1
4
[
(cos2 θ + sin4 θ)

1
2 − cosθ

]− 1
2

×{
sin2 θ |+〉 + (−1)k

[
(cos2 θ + sin4 θ)

1
2 − cosθ

]|−〉}
= cos

(
χ2

2

)
|+〉 + (−1)k sin

(
χ2

2

)
|−〉. (58)

These states are depicted on the Bloch sphere in figure 3. They have the same longitude as the
corresponding POM elements but are again further north than the original signal states having
a latitudeπ/2 − χ2 where

cosχ2 = cosθ(cos2 θ + sin4 θ)−
1
2 . (59)

This angle also corresponds to a latitude that is south of the optimum for the cases in which
M > 2.

If there are only two possible signal states then the maximum fidelity is achieved by means
of the unique strategy of performing the simple von Neumann measurement corresponding
to the POM elements (53). The required retransmission states associated with the relevant
measurement outcomes have the form given in (58).

5. Conclusion

In a quantum communications channel the signal comprises a known set of quantum states,
each with a knowna priori probability for transmission. The possibility of selecting non-
orthogonal states distinguishes the quantum channel from its classical counterpart and leads
to novel technical possibilities including quantum key distribution [11]. It also creates the
interesting problem for the receiver of having to select between a number of possible detection
strategies. The decision will be informed by the purpose for which the information retrieved
is intended. The strategy that minimizes the error probability will have the greatest chance
of retrieving the number ‘j’ associated with the initialclassical selection of the signal state.
As such it is a measure of the quality of the measurement strategy for retrieving this classical
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information. The fidelity, however, determines how well a state, selected on the basis of the
measurement outcome, will match the originally transmitted signal state. As such it depends
onboth the choice of measurement strategy and the selection of the associated ‘retransmission’
states. The fidelity measures the quality of the measurement strategy for retrieving|ψ j〉 rather
than ‘j’ and as such is a measure of the receiver’s ability to recover thequantum information
in the signal.

The fundamental difference between the error probability and the fidelity may be
illustrated with a simple example. Suppose that theM equiprobable signal qubit states
are all of the form |+〉. In this case, there is no measurement that can decrease the error
probability below the value 1− 1/M obtained by guessing the state. Selecting|+〉 as the only
retransmission state, however, gives the greatest possible fidelity of unity.

In this paper we have derived the maximum possible fidelity for the symmetric qubit
states defined in equation (11). This maximum value depends on whether there are two or
more than two possible signals states. For more than two signal states there is a wide range
of suitable measurement strategies that can achieve the maximum fidelity. This includes the
unique strategy that minimizes the error probability. For two signal states the only strategy that
can achieve the maximum fidelity is that which minimizes the error probability. In general, the
required retransmission states depend on the measurement outcome but coincide with neither
the signal states nor the elements of the measurement POM. It remains an open question as
to whether the strategy that minimizes the error probability will always maximize the fidelity.
We will return to this question elsewhere.
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